Analog / Analog Laboratory

***Important News*** ***Important News***

!!! Auf vielfache Nachfrage hin, hier nun mein neuer MATLAB – Kurs, Beginn ab 15.07.2016 !!!

Dauer: 8 Wochen (8 Termine / 90 Minuten / 40 Euro pro Termin)

Beginn : 15.07.2016 — Ende : 02.09.2016, immer Dienstags oder Freitags von 19.30 Uhr – 21 Uhr, 4 U-Bahnstationen vom Alexanderplatz, sehr schöner großer Raum mit toller Aussicht über die ganze Stadt.

Die Unterrichtssprache wird Englisch sein, ich kann aber auch gut Deutsch sprechen und notfalls auf Deutsch erklären.

Inhalte des MATLAB-Kurses:

1. Einführung in die Programmiersprache MATLAB

– Introduction to MATLAB programming language

2. Datentypen in MATLAB

– Data Types in MATLAB

3. Kontrollstrukturen in MATLAB

– Control structures in MATLAB

4. MATLAB Definitionen und Funktionen

– Definition and using Functions in MATLAB

5. Graphiken und Diagrammdarstellung in MATLAB

– Graphics and graph depiction in MATLAB

6. Dateien und Informationsmanagement in MATLAB

– Files and information management in MATLAB

7. Immer Hausarbeiten und Übungen für die nächste Unterrichtseinheit

– Solving homework and exercises

Weitere Informationen findet sie auf meiner Website: www.kispow.com. Bei Fragen, bitte kontaktieren Sie mich unter: info at kispow.com und rufen Sie mich an: 1523 859 895 0

Liebe Grüße und bis bald in meinem Kurs!

Armin

***End of Important News*** ***End of Important News***

In this section, You can find contents and topics for Electronic (Analog) course that I will teach in the class. These topics are according to the academic and university syllabus and will start from elementary level(from scratch) to advanced level.

To make it easy learning as possible as I can even for those people who don’t have any knowledge about Electronic course, I teach every chapter with many examples, explanations and in a step by step procedure. After finishing every chapter, participants will receive exercises(homework) and simulation projects to do and in this way, they will increase their ability and skills in solving electronic problems and finding much more understanding about practical electronics.

The electronic course is not just a theoretical course,rather, after finishing every chapter we will have a separate session for laboratory to build and test parts and circuits which we taught in this chapter.

If you are interested in this course, Please refer to “registration” tab and register soon due to class capacity is limited to 20 seats.

If you are living in Berlin and you are busy and don’t have time to come to my classes,it is also possible to have private courses.About the location, you can come to my flat or I can come to your flat or we can go somewhere else.

About the time and date : everyday(also weekends : Saturday and Sunday) in evening after 5 p.m. is possible.

For people who don’t live in Berlin,please refer to “contact us” tab and write “Skype learning” in the message,i will contact them soon.
If you have any question, comment and suggestion about following chapters, please go to “Contact us” tab and send me your message,i will get in touch shortly.

The contents and chapters for electronic course are as following :

CHAPTER 1: Semiconductor Diodes
1.1 Introduction
1.2 Semiconductor Materials: Ge, Si, and GaAs
1.3 Covalent Bonding and Intrinsic Materials
1.4 Energy Levels
1.5 n -Type and p -Type Materials
1.6 Semiconductor Diode
1.7 Ideal Versus Practical
1.8 Resistance Levels
1.9 Diode Equivalent Circuits
1.10 Transition and Diffusion Capacitance
1.11 Reverse Recovery Time
1.12 Diode Specification Sheets
1.13 Semiconductor Diode Notation
1.14 Diode Testing
1.15 Zener Diodes
1.16 Light-Emitting Diodes
1.17 Summary
1.18 Computer Analysis

CHAPTER 2: Diode Applications
2.1 Introduction
2.2 Load-Line Analysis
2.3 Series Diode Configurations
2.4 Parallel and Series–Parallel Configurations
2.5 AND/OR Gates
2.6 Sinusoidal Inputs; Half-Wave Rectification
2.7 Full-Wave Rectification
2.8 Clippers
2.9 Clampers
2.10 Networks with a dc and ac Source
2.11 Zener Diodes
2.12 Voltage-Multiplier Circuits
2.13 Practical Applications
2.14 Summary
2.15 Computer Analysis

CHAPTER 3: Bipolar Junction Transistors
3.1 Introduction
3.2 Transistor Construction
3.3 Transistor Operation
3.4 Common-Base Configuration
3.5 Common-Emitter Configuration
3.6 Common-Collector Configuration
3.7 Limits of Operation
3.8 Transistor Specification Sheet
3.9 Transistor Testing
3.10 Transistor Casing and Terminal Identification
3.11 Transistor Development
3.12 Summary
3.13 Computer Analysis

CHAPTER 4: DC Biasing—BJTs
4.1 Introduction
4.2 Operating Point
4.3 Fixed-Bias Configuration
4.4 Emitter-Bias Configuration
4.5 Voltage-Divider Bias Configuration
4.6 Collector Feedback Configuration
4.7 Emitter-Follower Configuration
4.8 Common-Base Configuration
4.9 Miscellaneous Bias Configurations
4.10 Summary Table
4.11 Design Operations
4.12 Multiple BJT Networks
4.13 Current Mirrors
4.14 Current Source Circuits
4.15 pnp Transistors
4.16 Transistor Switching Networks
4.17 Troubleshooting Techniques
4.18 Bias Stabilization
4.19 Practical Applications
4.20 Summary
4.21 Computer Analysis

CHAPTER 5: BJT AC Analysis
5.1 Introduction
5.2 Amplification in the AC Domain
5.3 BJT Transistor Modeling
5.4 The re Transistor Model
5.5 Common-Emitter Fixed-Bias Configuration
5.6 Voltage-Divider Bias
5.7 CE Emitter-Bias Configuration
5.8 Emitter-Follower Configuration
5.9 Common-Base Configuration
5.10 Collector Feedback Configuration
5.11 Collector DC Feedback Configuration
5.12 Effect of RL and Rs
5.13 Determining the Current Gain
5.14 Summary Tables
5.15 Two-Port Systems Approach
5.16 Cascaded Systems
5.17 Darlington Connection
5.18 Feedback Pair
5.19 The Hybrid Equivalent Model
5.20 Approximate Hybrid Equivalent Circuit
5.21 Complete Hybrid Equivalent Model
5.22 Hybrid pi Model
5.23 Variations of Transistor Parameters
5.24 Troubleshooting
5.25 Practical Applications
5.26 Summary
5.27 Computer Analysis

CHAPTER 6: Field-Effect Transistors
6.1 Introduction
6.2 Construction and Characteristics of JFETs
6.3 Transfer Characteristics
6.4 Specification Sheets (JFETs)
6.5 Instrumentation
6.6 Important Relationships
6.7 Depletion-Type MOSFET
6.8 Enhancement-Type MOSFET
6.9 MOSFET Handling
6.10 VMOS and UMOS Power and MOSFETs
6.11 CMOS
6.12 MESFETs
6.13 Summary Table
6.14 Summary
6.15 Computer Analysis

CHAPTER 7: FET Biasing
7.1 Introduction
7.2 Fixed-Bias Configuration
7.3 Self-Bias Configuration
7.4 Voltage-Divider Biasing
7.5 Common-Gate Configuration
7.6 Special Case VGSQ = 0 V
7.7 Depletion-Type MOSFETs
7.8 Enhancement-Type MOSFETs
7.9 Summary Table
7.10 Combination Networks
7.11 Design
7.12 Troubleshooting
7.13 p -Channel FETs
7.14 Universal JFET Bias Curve
7.15 Practical Applications
7.16 Summary
7.17 Computer Analysis

CHAPTER 8: FET Amplifiers
8.1 Introduction
8.2 JFET Small-Signal Model
8.3 Fixed-Bias Configuration
8.4 Self-Bias Configuration
8.5 Voltage-Divider Configuration
8.6 Common-Gate Configuration
8.7 Source-Follower (Common-Drain) Configuration
8.8 Depletion-Type MOSFETs
8.9 Enhancement-Type MOSFETs
8.10 E-MOSFET Drain-Feedback Configuration
8.11 E-MOSFET Voltage-Divider Configuration
8.12 Designing FET Amplifier Networks
8.13 Summary Table
8.14 Effect of RL and Rsig
8.15 Cascade Configuration
8.16 Troubleshooting
8.17 Practical Applications
8.18 Summary
8.19 Computer Analysis

CHAPTER 9: BJT and JFET Frequency Response
9.1 Introduction
9.2 Logarithms
9.3 Decibels
9.4 General Frequency Considerations
9.5 Normalization Process
9.6 Low-Frequency Analysis—Bode Plot
9.7 Low-Frequency Response—BJT Amplifier with RL
9.8 Impact of Rs on the BJT Low-Frequency Response
9.9 Low-Frequency Response—FET Amplifier
9.10 Miller Effect Capacitance
9.11 High-Frequency Response—BJT Amplifier
9.12 High-Frequency Response—FET Amplifier
9.13 Multistage Frequency Effects
9.14 Square-Wave Testing
9.15 Summary
9.16 Computer Analysis

CHAPTER 10: Operational Amplifiers
10.1 Introduction
10.2 Differential Amplifier Circuit
10.3 BiFET, BiMOS, and CMOS Differential Amplifier Circuits
10.4 Op-Amp Basics
10.5 Practical Op-Amp Circuits
10.6 Op-Amp Specifications—DC Offset Parameters
10.7 Op-Amp Specifications—Frequency Parameters
10.8 Op-Amp Unit Specifications
10.9 Differential and Common-Mode Operation
10.10 Summary
10.11 Computer Analysis

CHAPTER 11: Op-Amp Applications
11.1 Constant-Gain Multiplier
11.2 Voltage Summing
11.3 Voltage Buffer
11.4 Controlled Sources
11.5 Instrumentation Circuits
11.6 Active Filters
11.7 Summary
11.8 Computer Analysis

CHAPTER 12: Power Amplifiers
12.1 Introduction—Definitions and Amplifier Types
12.2 Series-Fed Class A Amplifier
12.3 Transformer-Coupled Class A Amplifier
12.4 Class B Amplifier Operation
12.5 Class B Amplifier Circuits
12.6 Amplifier Distortion
12.7 Power Transistor Heat Sinking
12.8 Class C and Class D Amplifiers
12.9 Summary
12.10 Computer Analysis

CHAPTER 13: Linear-Digital ICs
13.1 Introduction
13.2 Comparator Unit Operation
13.3 Digital–Analog Converters
13.4 Timer IC Unit Operation
13.5 Voltage-Controlled Oscillator
13.6 Phase-Locked Loop
13.7 Interfacing Circuitry
13.8 Summary
13.9 Computer Analysis

CHAPTER 14: Feedback and Oscillator Circuits
14.1 Feedback Concepts
14.2 Feedback Connection Types
14.3 Practical Feedback Circuits
14.4 Feedback Amplifier—Phase and Frequency Considerations
14.5 Oscillator Operation
14.6 Phase-Shift Oscillator
14.7 Wien Bridge Oscillator
14.8 Tuned Oscillator Circuit
14.9 Crystal Oscillator
14.10 Unijunction Oscillator
14.11 Summary
14.12 Computer Analysis

CHAPTER 15: Power Supplies (Voltage Regulators)
15.1 Introduction
15.2 General Filter Considerations
15.3 Capacitor Filter
15.4 RC Filter
15.5 Discrete Transistor Voltage Regulation
15.6 IC Voltage Regulators
15.7 Practical Applications
15.8 Summary
15.9 Computer Analysis

CHAPTER 16: Other Two-Terminal Devices
16.1 Introduction
16.2 Schottky Barrier (Hot-Carrier) Diodes
16.3 Varactor (Varicap) Diodes
16.4 Solar Cells
16.5 Photodiodes
16.6 Photoconductive Cells
16.7 IR Emitters
16.8 Liquid-Crystal Displays
16.9 Thermistors
16.10 Tunnel Diodes
16.11 Summary

CHAPTER 17: pnpn and Other Devices
17.1 Introduction
17.2 Silicon-Controlled Rectifier
17.3 Basic Silicon-Controlled Rectifier Operation
17.4 SCR Characteristics and Ratings
17.5 SCR Applications
17.6 Silicon-Controlled Switch
17.7 Gate Turn-Off Switch
17.8 Light-Activated SCR
17.9 Shockley Diode
17.10 Diac
17.11 Triac
17.12 Unijunction Transistor
17.13 Phototransistors
17.14 Opto-Isolators
17.15 Programmable Unijunction Transistor
17.16 Summary